
Tencent Hunyuan

HunyuanWorld-Mirror: Technical Report

Tencent Hunyuan*

https://3d-models.hunyuan.tencent.com/world/
https://huggingface.co/tencent/HunyuanWorld-Mirror
https://github.com/Tencent-Hunyuan/HunyuanWorld-Mirror

Abstract

While HunyuanWorld 1.0 generates immersive and playable 3D worlds from texts
or single-view images, it lacks the capability to process videos or multi-view images.
HunyuanWorld 1.1 bridges this gap with WorldMirror, an all-in-one, feed-forward
model for versatile 3D geometric prediction tasks, which unlocks video-to-3D and
multi-view-to-3D world creation. Unlike existing methods constrained to image-
only inputs or customized for a specific task, our framework flexibly integrates
diverse geometric priors, including camera poses, intrinsics, and depth maps, while
simultaneously generating multiple 3D representations: dense point clouds, multi-
view depth maps, camera parameters, surface normals, and 3D Gaussians. This
elegant and unified architecture leverages available prior information to resolve
structural ambiguities and delivers geometrically consistent 3D outputs in a single
forward pass. WorldMirror achieves state-of-the-art performance across diverse
benchmarks from camera, point map, depth, and surface normal estimation to novel
view synthesis, while maintaining the efficiency of feed-forward inference.

1 Introduction

Visual geometry learning is a fundamental problem in computer vision, with applications span-
ning augmented reality, robotics, and autonomous navigation. Traditional Structure-from-Motion
(SfM) [41] and Multi-View Stereo (MVS) algorithms rely on iterative optimization, making them
computationally expensive. The field has recently shifted toward feed-forward neural networks
that directly reconstruct geometry from visual inputs. These end-to-end models, exemplified by
DUSt3R [54] and its successors, have demonstrated remarkable capabilities in processing image
pairs, videos, and multi-view images.

∗ Team contributors are listed in the end of report.
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Figure 1: HunyuanWorld-Mirror is a large feed-forward 3D reconstruction model that takes raw
images along with optional priors (depth, calibrated intrinsics, camera pose) as input and produces
high-quality geometric attributes in seconds, including point clouds, 3DGS, cameras, depth, and
normal maps.

Despite significant progress, existing methods still face two critical limitations regarding their input
and output spaces. On the input front, these approaches exclusively process raw images, failing to
leverage additional modalities that are useful and often accessible in real-world applications, such as
calibrated camera intrinsics, camera poses, and depth measurements derived from LIDAR or RGB-D
sensors. Without incorporating these prior cues, current methods encounter unnecessary challenges
in scenarios that could otherwise be readily addressed: calibrated intrinsics resolve scale ambiguities,
camera poses ensure multi-view consistency, and depth measurements ground predictions in areas
where image-based cues alone are insufficient, such as textureless or reflective regions.

Second, existing methods are typically limited to addressing single or limited tasks in output space.
These approaches are often highly specialized, e.g., focusing on depth estimation [61], point map
regression [54], camera pose prediction [51], or point tracking [24], and rarely integrate multiple
tasks within a unified framework. Recently, VGGT [50] has explored unifying these tasks, but some
fundamental geometry tasks like surface normal estimation and novel view synthesis remain excluded.
These two limitations prompt a critical question: can we reconcile both challenges by effectively
leveraging diverse prior knowledge within a universal 3D reconstruction architecture?

To address these challenges, we introduce WorldMirror [32], a framework designed to perform
universal 3D reconstruction tasks while leveraging any available geometric priors. At the core
of WorldMirror is a novel Multi-Modal Prior Prompting mechanism that embeds diverse prior
modalities, including calibrated intrinsics, camera pose, and depth, into the feed-forward model.
Given any subset of the available priors, we utilize several lightweight encoding layers to convert each
modality into structured tokens. Rather than treating all prior modalities uniformly, we implement
specialized embedding strategies for each modality type. Camera poses and calibrated intrinsics are
encoded into a single token due to their compact nature. Depth maps, rich in spatial information,
are converted to dense tokens. These tokens maintain spatial alignment with visual tokens and are
integrated through direct addition. Furthermore, to reduce the training-inference gap, we propose a
dynamic prior injection scheme by randomly sampling distinct prior combinations during training,
enabling the model to adapt to arbitrary subsets (including none) of available priors during inference.

Besides, WorldMirror features a Universal Geometric Prediction architecture capable of handling
the full spectrum of 3D reconstruction tasks from camera and depth estimation to point map regression,
surface normal estimation, and novel view synthesis. WorldMirror builds upon a fully transformer-
based architecture for regressing camera parameters and uses unified decoder heads for all other
dense prediction tasks. Incorporating these tasks together broadens the model’s capabilities toward
a versatile 3D reconstruction framework. However, training such a multi-task 3D reconstruction
foundation model poses significant challenges, as geometric quantities are inherently coupled and
require carefully designed training strategies. We thus propose a systematic curriculum learning
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Figure 2: Overview of WorldMirror. Given multi-view images with optional priors (depths, calibrated
intrinsics, camera poses) as input, our framework encodes each prior modality into tokens and
integrates them with image tokens. The composite tokens are subsequently processed by a visual
transformer backbone to effectively aggregate multi-view features. The consolidated representations
are then passed to multi-task heads to generate comprehensive geometric outputs, including point
maps, camera parameters, multi-view depth maps, surface normals, and 3D Gaussians.

strategy to optimize training efficiency and enhance performance by progressing from simple to
complex across three dimensions: task sequencing, data scheduling, and progressive resolution.

Extensive experiments demonstrate that WorldMirror achieves state-of-the-art performance across
diverse benchmarks and tasks. It surpasses recent 3D reconstruction methods, such as VGGT [50]
and π3 [56] in point map and camera estimation, while outperforming StableNormal [64] and
GeoWizard [15] in surface normal prediction and significantly exceeding recent method AnySplat [22]
in novel view synthesis.

Our contributions can be summarized as:

• We propose a universal 3D world reconstruction model capable of taking multi-modal priors
as guidance, including per-view calibrated intrinsics, camera pose, and depth maps.

• Our model serves as a foundational 3D reconstruction framework, which supports universal
geometric predictions from point map, camera, depth, and surface normal estimation to
novel view synthesis.

• Extensive experiments show that our method outperforms existing methods across diverse
tasks qualitatively and quantitatively.

2 Technical Details

Given N multi-view images {Ii}Ni=1, our work aims to utilize any available priors for unified
geometric predictions. To this end, we introduce multi-modal prior prompting (Sec. 2.1) to embed
priors including calibrated intrinsics, camera poses, and depth maps seamlessly into dense visual
tokens as guidance for our model. To unify various geometric predictions, we present universal
geometric prediction (Sec. 2.2) to predict various geometric attributes, including point maps, multi-
view depths, camera parameters, surface normals, and 3D Gaussians, within our unified framework.
To reduce the training-inference gap and achieve the optimal overall performance, we introduce a
dynamic prior injection scheme with well-designed curriculum learning strategies (Sec. 3.1).

2.1 Multi-Modal Prior Prompting

As demonstrated in previous works [36, 19], auxiliary information like calibrated intrinsics, depths,
and camera poses substantially enhances visual geometric learning. This motivates us to develop a
model that flexibly leverages available priors when present, while maintaining robust reconstruction
quality when priors are unavailable. In the following, we discuss how to effectively embed diverse
modality information as input to our model, and then describe the training strategy that enables the
model to flexibly infer with any priors.
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Camera Pose. Given the camera poses {[Ri|ti]}Ni=1 of input images, where Ri ∈ R3×3, ti ∈ R3,
we first normalize the scene scale to a standard unit cube, and the new translation vector tnorm is
formulated as: tnormi = (ti − c)/α, where c is the camera center and α is the maximum distance of
each camera to c. This normalization ensures consistent numerical ranges regardless of the scene
scale. Then, to integrate camera information, we encode each camera pose [Ri|tnormi ] into a single
token due to their compact representation. Specifically, we convert each rotation matrix Ri ∈ R3×3

to a quaternion qi ∈ R4 and combine it with the normalized translation vector tnormi ∈ R3 to form a
7-dimensional vector. This vector is then projected to T cam

i ∈ R1×D using a two-layer MLP, where
D matches the dimension of image tokens, enabling seamless token concatenation.

Calibrated Intrinsics. Embedding calibrated camera intrinsics is comparatively straightforward.
Given the intrinsic matrix Ki ∈ R3×3 of each image, we extract the focal lengths and principal points
(fx, fy, cx, cy) and normalize them by dividing the image width W and height H , respectively. This
normalization ensures training stability across images with varying resolutions. Similar to camera
pose, we project the normalized intrinsic to T intr

i ∈ R1×D using a two-layer MLP, enabling seamless
concatenation with visual tokens.

Depth Map. Unlike camera poses and intrinsics that are compact representations, depth maps are
dense spatial signals requiring different embedding strategies. Given a depth map Di ∈ RH×W ,
we first normalize its values to the range [0, 1] to ensure numerical stability. Then, we employ a
convolutional layer with kernel size matching the patch size used for visual tokens to create depth
tokens T depth

i ∈ R(Hp×Wp)×D, where Hp,Wp are the token height and width, respectively. These
depth tokens are spatially aligned with the visual tokens and are directly added to them. This additive
integration preserves the spatial structure of the scene while enriching visual tokens with geometric
information, fusing appearance and geometry in a unified representation.

Versatile Prior Prompting. To enable versatile prior-prompted 3D reconstruction, we concatenate
intrinsics tokens and camera pose tokens with image tokens T img

i ∈ R(Hp×Wp)×D, while directly
adding depth tokens, resulting in a prompted token set T prompt

i as:

T prompt
i = [T cam

i , T intr
i ,T img

i + T depth
i ], T prompt

i ∈ R(1+1+Hp×Wp)×D (1)

Considering that during inference, we may not have access to all modality information, we thus
propose a dynamic prior injection scheme during training, which allows the model to adapt to arbitrary
combinations of priors, as stated in Sec. 3.1.

2.2 Universal Geometric Prediction

Recent approaches, such as VGGT, have unified various geometry prediction tasks, but lack support
for some common applications like novel view synthesis and surface normal estimation. In this work,
we propose a more comprehensive framework enabling universal geometric prediction, including
point maps, camera parameters, depth maps, surface normals, and 3D Gaussians.

Point Map, Camera, and Depth Estimation. Following the design of VGGT, given the output
tokens T out

i ∈ RL×D of visual transformer backbone, we utilize DPT heads DPT(·) [37] to regress
dense outputs, including 3D point map P̂i and multiview depth D̂i, and use transformer layers to
predict camera parameters Êi from camera tokens:

P̂i = DPTp(T̂
img
i ), D̂i = DPTd(T̂

img
i ), Êi = Transformer(T̂ cam

i ) (2)

Surface Normal Estimation. For surface normal estimation, we employ the same DPT architecture
as other dense prediction tasks, followed by L2 normalization to ensure unit vector outputs:

N̂i = DPTn(T̂
img
i ) / ||DPTn(T̂ img

i )||2. (3)

To address the scarcity of ground-truth normal annotations, we introduce a hybrid supervision
approach. We leverage both annotated datasets and pseudo normals derived from ground-truth depth
maps via plane fitting for datasets lacking normal labels, which enables effective usage of diverse
data for generalization while ensuring consistent normal estimation.

Novel View Synthesis. To enable novel view synthesis, we predict 3D Gaussian Splatting (3DGS).
Specifically, we use a DPT head DPTg(·) to regress pixel-wise Gaussian depth maps D̂g and Gaussian
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feature maps Fg. These depth predictions are back-projected using the ground-truth camera poses
[R|t] and intrinsic matrix K to obtain the Gaussian centers µg. To infer the remaining Gaussian
attributes Ĝ, including opacity σg, orientation rg, scale sg, residual spherical-harmonic color co-
efficients ∆cg, and a fusion weight wg, we combine Fg with appearance features derived from a
convolution network Conv(·). The overall process can be formulated as:

Ĝ = Conv(Fg, I), D̂g, Fg = DPTg(T̂
img) (4)

To reduce Gaussian redundancy caused by overlapping regions across multiple views, we cluster
and prune per-pixel Gaussians through voxelization, similar to AnySplat [22]. To enable novel view
synthesis, the input images are split into context and target sets during training. The 3D Gaussians
are built only from context views but rendered to and supervised by both target and original context
viewpoints via a differentiable rasterizer [65]. This dual supervision enables the model to synthesize
novel views while preserving consistency with input observations.

Training Losses. Our model is trained end-to-end by minimizing a composite loss function, L,
which integrates supervision for all prediction tasks:

L = λpointsLpoints + λdepthLdepth + λcamLcam + λnormalLnormal + λ3dgsL3dgs. (5)

We follow VGGT to implement Lcam, Lpoints, and Ldepth. Specifically, we use a gradient-based term
to supervise the predicted point P̂i:

Lpoint =

N∑
i=1

∥ΣP
i ⊙ (P̂i − Pi)∥+ ∥ΣP

i ⊙ (∇P̂i −∇Pi)∥ − α log ΣP
i , (6)

where ⊙ is the channel-broadcast element-wise product and ΣP
i refers to the point uncertainty. The

depth loss Ldepth is analogous to Lpoint but replaces the point with depth. For camera loss Lcam, we
implement a Huber loss ∥ · ∥ϵ to supervise the predicted camera Ei:

Lcam = ΣN
i=1∥Ei − Êi∥ϵ. (7)

To supervise the predicted surface normals Êi, we use Angle Loss (AL), which effectively measures
the directional deviation between predicted and ground truth normal vectors. The normal loss function
is specifically defined as:

Lnormal = ΣN
i=1αl · (1− |N̂i ·Ni|). (8)

To enhance robustness in novel views, at each training iteration, we partition the input views I into K
candidate context and novel view splits. The pixel overlap rate between the ground truth depth map
and camera parameters is computed for each novel view in the context of the candidate context views.
The split with the highest pixel overlap rate is selected, with the corresponding context views and
novel views being used for further training. Next, based on the selected context images, we regress
the 3DGS positions and properties, and render both context view images and novel view images Î .
Then, the RGB rendering loss across all views is defined as follows:

Lrgb = ΣN
i=1∥Ii[Mi]− Îi[Mi]∥+ λlpipsLPIPS(Ii[Mi], Îi[Mi]), (9)

where M denotes the mask indicating whether the pixels in the current view are visible from the
context views, analogous to the novel view mask introduced in [46].

To explicitly supervise the locations of the 3D Gaussian splats, we introduce the depth supervision
loss Lgsdepth, which enforces consistency between the ground truth depth map and the depth map
predicted by the GS head. The formulation of Lgsdepth follows the same definition as Eq. 6. It is
worth noting that, instead of using the depth estimated by the depth head to compute the Gaussian
positions, we rely on the GS head to directly predict both the positions and other attributes of the
splats. This design choice is further validated in our ablation studies (see Tab. 8). However, due to
inherent ambiguities in multi-view rendering and potential noise in the ground truth depth, relying
solely on Lrgb and Lgsdepth often leads to the presence of floating points in the predicted 3DGS. To
mitigate this issue, we introduce a gradient consistency loss Lconsis, which regularizes the gradients of
the GS-rendered depth map D̃ to be consistent with the pseudo depth D̂ predicted by the depth head:

Lconsis = ΣN
i=1∥∇D̂i[M̂i]−∇D̃i[M̂i]∥, (10)

where M̂ is the depth confidence mask corresponding to the top 30%-quantile of the confidence map.
Finally, the 3DGS loss is defined as L3dgs = Lrgb + λgsdepthLgsdepth + λconsisLconsis.
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Figure 3: Feed-Forward 3D Gaussians Predicted by WorldMirror with In-The-Wild Inputs.
Besides real photos, our method generalizes well to AI-created videos spanning diverse styles.

3 Model Evaluation

In this section, we evaluate our approach across four tasks (Sec. 3.2): point map reconstruction,
camera pose estimation, surface normal estimation, and novel view synthesis. We also evaluate the
effectiveness of different configurations of input priors with a prior-guidance benchmark (Sec. 3.3),
and conduct an ablation study to evaluate our design choices (Sec. 3.4). To demonstrate the general-
ization ability of our method with in-the-wild inputs, we predict the 3D Gaussians (Fig. 8) and point
clouds (Fig. 10) with diverse styles of AI-created videos.

3.1 Training Settings

Implementation Details. Our model undergoes a two-phase training process. Initially, we train
for 100 epochs using multi-modal prior prompting with a normal head, followed by 50 epochs of
fine-tuning with a Gaussian head. Throughout both phases, we implement dynamic image resolutions,
maintaining total pixel counts between 100,000 and 250,000, while sampling aspect ratios from 0.5
to 2.0. We employ a dynamic batch sizing approach similar to VGGT, processing 24 images per GPU
across a cluster of 32 H20 GPUs. Our optimization strategy features parameter-specific learning rates:
2e-5 for patch embedding layers, 1e-4 for alternated attention modules and pre-trained pointmap,
depth, and camera head, and 2e-4 for newly introduced parameters. We use a CosineAnnealing
scheduler that gradually decreases from maximum to minimum values following a cosine curve.
For our composite loss function, we carefully balance component weights as follows: λpoints = 1.0,
λdepth = 1.0, λcam = 5.0, λnormal = 1.0, λ3dgs = 1.0, λlpips = 0.05, λgsdepth = 0.1, λconsis = 0.1.

Dynamic Prior Injection Scheme. Specifically, we randomly toggle each prior modality with a
probability of 0.5 during training. When a particular prior is disabled, we set the corresponding
tokens to zero. This straightforward approach offers several advantages: it enhances model robustness
by forcing the network to handle missing information, enables graceful degradation when certain
priors are unavailable during inference, and creates a single unified model capable of operating across
different prior combinations.

Curriculum Learning Strategy. During training, we employ a systematic curriculum learning
strategy designed to optimize training efficiency and enhance performance by progressing from
simple to complex across task sequencing, data scheduling, and resolution.

For task sequencing, initially, we jointly train the multi-modal prior prompting module with other
parameters initialized from the pretrained weights of VGGT, which establishes a foundational
capability of prior-aware prediction. We then incorporate the normal prediction task into the joint
training scheme. Finally, we freeze all model parameters and exclusively train the 3DGS head for
3DGS attributes prediction. This progressive task sequencing strategy ensures effective training for
universal geometric prediction with any prior combination.
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Table 1: Point map Reconstruction on 7-Scenes, NRGBD, and DTU. We report the performance
of WorldMirror under different input configurations. The best results are bold.

Method

7-Scenes (scene) NRGBD (scene) DTU (object)

Acc. ↓ Comp. ↓ Acc. ↓ Comp. ↓ Acc. ↓ Comp. ↓
Mean Med. Mean Med. Mean Med. Mean Med. Mean Med. Mean Med.

Fast3R [60] 0.096 0.065 0.145 0.093 0.135 0.091 0.163 0.104 3.340 1.919 2.929 1.125
CUT3R [53] 0.094 0.051 0.101 0.050 0.104 0.041 0.079 0.031 4.742 2.600 3.400 1.316
FLARE [69] 0.085 0.058 0.142 0.104 0.053 0.024 0.051 0.025 2.541 1.468 3.174 1.420
VGGT [50] 0.046 0.026 0.057 0.034 0.051 0.029 0.066 0.038 1.338 0.779 1.896 0.992
π3[56] 0.048 0.028 0.072 0.047 0.026 0.015 0.028 0.014 1.198 0.646 1.849 0.607

WorldMirror 0.043 0.026 0.049 0.028 0.041 0.020 0.045 0.019 1.017 0.564 1.780 0.690
WorldMirror (w/ intrinsics) 0.042 0.028 0.048 0.026 0.041 0.020 0.045 0.019 0.977 0.542 1.762 0.682
WorldMirror (w/ depth) 0.038 0.024 0.039 0.023 0.032 0.015 0.031 0.014 0.831 0.506 1.022 0.599
WorldMirror (w/ camera pose) 0.023 0.014 0.036 0.019 0.029 0.018 0.032 0.017 0.990 0.548 1.847 0.686
WorldMirror (w/ intrinsics/depth/camera pose) 0.018 0.011 0.023 0.014 0.016 0.011 0.014 0.010 0.735 0.461 0.935 0.550

Table 2: Camera Pose Estimation on RealEstate10K, Sintel, and TUM-dynamics. All datasets
are excluded from the training set, except that RealEstate10K was included for CUT3R training.

Method
RealEstate10K (mixed, static) Sintel (outdoor, dynamic) TUM-dynamics (indoor, dynamic)

RRA@30 ↑ RTA@30 ↑ AUC@30 ↑ ATE↓ RPE trans↓ RPE rot↓ ATE↓ RPE trans↓ RPE rot↓
Fast3R[60] 99.05 81.86 61.68 0.371 0.298 13.75 0.090 0.101 1.425
CUT3R [53] 99.82 95.10 81.47 0.217 0.070 0.636 0.047 0.015 0.451
FLARE [69] 99.69 95.23 80.01 0.207 0.090 3.015 0.026 0.013 0.475
VGGT [50] 99.97 93.13 77.62 0.167 0.062 0.491 0.012 0.010 0.312
π3 [56] 99.99 95.62 85.90 0.074 0.040 0.282 0.014 0.009 0.312

WorldMirror 99.99 95.81 86.28 0.096 0.058 0.490 0.010 0.009 0.297

For data scheduling, we equip the initial training phase with a comprehensive dataset of both real and
synthetic data, which exposes the model to a diverse data distribution for improving the generalization
capabilities and preventing overfitting. Following this, the model undergoes a fine-tuning stage
using only synthetic data with high-quality annotations of camera, depth, and surface normal, which
mitigates the impact of annotation noise inherent in real-world datasets, guiding the model to learn
more precise and reliable patterns.

For training resolution, we use a progressive resolution warm-up, beginning with low-resolution
inputs and outputs to ensure stable and rapid initial convergence, then gradually increasing the
resolution to enhance the model’s ability to perceive fine details.

Training Data. The training data comprises a diverse collection of 15 datasets spanning various
scene types and capture conditions. This heterogeneous mix includes both established benchmarks
and recent collections: DL3DV [30], BlenderMVS [62], TartanAir [55], ASE [35], Unreal4K [49],
Habitat [40], MapFree [1], MVS-Synth [17], ArkitScenes [5], ScanNet++ [66], MegaDepth [29],
Hypersim [39], Matterport3D [7], Co3dv2 [38], and WildRGBD [57] datasets. This extensive dataset
aggregation provides rich supervision across indoor/outdoor environments, real/synthetic scenes, and
static/dynamic objects, enabling our model to learn generalizable geometric representations.

3.2 Evaluation on Different Tasks

Point Map Reconstruction. We assess point map reconstruction quality across both scene-level
and object-level datasets: 7-Scenes [44], NRGBD [2], and DTU [20]. We use multi-view images
with fixed sequence-id mappings from [56] for fair comparison, reporting Accuracy (Acc.) and
Completion (Comp.) metrics in Tab. 1. Our method without any priors already surpasses previous
SOTA approaches VGGT and π3, with significant improvements of 10.4% and 17.8% in mean
accuracy on 7-Scenes and DTU, respectively. Incorporating a single prior can further enhance
performance, while the combination of all priors achieves optimal results, which delivers clear gains
of 58.1% and 53.1% in mean accuracy on 7-Scenes and NRGBD compared to our no-prior baseline.
These results clearly demonstrate our model’s ability to effectively leverage prior information for
better reconstruction.

Camera Pose Estimation. Following the protocol of [56], we test camera pose estimation on three
unseen datasets: RealEstate10K [70], Sintel [6], and TUM-dynamics [47]. For RealEstate10K, we
select 10 fixed images per sequence and examine all pairwise combinations, measuring Relative
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Table 3: Monocular and Video Depth Estimation on NYUv2, Sintel, and KITTI.

Method
NYU-v2 (Monocular) Sintel (Monocular) KITTI (Video) Sintel (Video)

Abs Rel ↓ δ < 1.25 ↑ Abs Rel ↓ δ < 1.25 ↑ Abs Rel ↓ δ < 1.25 ↑ Abs Rel ↓ δ < 1.25 ↑
DUSt3R [54] 0.081 0.909 0.488 0.532 0.143 0.814 0.662 0.434
MASt3R [28] 0.11 0.865 0.413 0.569 0.115 0.848 0.558 0.487
MonST3R [68] 0.094 0.887 0.492 0.525 0.107 0.884 0.399 0.519
Fast3R [60] 0.093 0.898 0.544 0.509 0.138 0.834 0.638 0.422
CUT3R [53] 0.081 0.914 0.418 0.52 0.122 0.876 0.417 0.507
FLARE [69] 0.089 0.898 0.606 0.402 0.356 0.57 0.729 0.336
VGGT [50] 0.056 0.951 0.606 0.599 0.062 0.969 0.299 0.638
π3 [56] 0.054 0.956 0.277 0.614 0.038 0.986 0.233 0.664

WorldMirror 0.052 0.957 0.339 0.624 0.063 0.968 0.289 0.668

Table 4: Surface Normal Estimation on ScanNet, NYUv2, and iBims-1. We compare with both
regression-based and diffusion-based surface normal estimation approaches. EESNU is trained on
ScanNet, thus its in-domain performance is omitted.

Method
ScanNet NYUv2 iBims-1

mean ↓ med ↓ 22.5◦ ↑ 30◦ ↑ mean ↓ med ↓ 22.5◦ ↑ 30◦ ↑ mean ↓ med ↓ 22.5◦ ↑ 30◦ ↑
OASIS [9] 32.8 28.5 38.5 52.6 29.2 23.4 48.4 60.7 32.6 24.6 46.6 57.4
EESNU [3] - - - - 16.2 8.5 77.2 83.5 20.0 8.4 73.4 78.2
Omnidata v1 [13] 22.9 12.3 66.1 73.2 23.1 12.9 66.3 73.6 19.0 7.5 76.1 80.1
Omnidata v2 [23] 16.2 8.5 79.5 84.7 17.2 9.7 76.5 83.0 18.2 7.0 77.4 81.1
DSine [4] 16.2 8.3 78.7 84.4 16.4 8.4 77.7 83.5 17.1 6.1 79.0 82.3
GeoWizard [15] 16.7 9.5 78.3 84.2 19.5 11.7 74.5 81.6 20.4 9.4 76.4 80.6
StableNormal [64] 16.0 9.9 81.5 86.5 18.5 11.2 77.5 83.6 17.9 8.5 80.4 83.9
WorldMirror 13.8 7.3 82.5 87.3 15.1 8.0 80.1 85.7 16.6 6.4 80.1 83.7

Table 5: Novel View Synthesis on RealEstate10K and DL3DV. We compare with feed-forward
3DGS methods under sparse and dense-view settings. FLARE focuses on sparse views NVS and thus
its performance under dense-view settings is omitted.

Method
RealEstate10K (2 views) DL3DV (8 views) RealEstate10K (32 views) DL3DV (64 views)

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
FLARE [69] 16.33 0.574 0.410 15.35 0.516 0.591 - - - - - -
AnySplat [22] 17.62 0.616 0.242 18.31 0.569 0.258 19.96 0.718 0.234 18.40 0.602 0.286

WorldMirror 20.62 0.706 0.187 20.92 0.667 0.203 25.14 0.859 0.109 21.25 0.703 0.223
WorldMirror (w/ intrinsics) 22.03 0.765 0.165 22.08 0.723 0.175 25.71 0.877 0.101 21.55 0.731 0.207
WorldMirror (w/ camera pose) 20.84 0.713 0.182 21.18 0.674 0.197 25.14 0.865 0.107 21.28 0.700 0.222
WorldMirror (w/ intrinsics/camera pose) 22.30 0.774 0.155 22.15 0.726 0.174 25.77 0.879 0.101 21.66 0.736 0.204

Rotation Accuracy (RRA), Relative Translation Accuracy (RTA), and Area Under the Curve (AUC)
at a 30-degree threshold. For Sintel and TUM-dynamics, we report Absolute Trajectory Error (ATE),
Relative Pose Error for translation (RPE trans), and rotation (RPE rot). Tab. 2 demonstrates strong
results: our method achieves superior zero-shot performance on RealEstate10K and TUM-dynamics,
while maintaining competitive results on Sintel. The performance on Sintel, though slightly below
the best methods, is reasonable given the limited outdoor dynamic scenes in our training data.

Monocular and Video Depth Estimation In Table 3, we evaluate WorldMirror in comparison
with contemporary approaches for both single-view and sequential depth estimation across diverse
input scenarios. Despite WorldMirror not being explicitly optimized for monocular metric depth
inference, it delivers performance that matches or exceeds current leading methods. When processing
video sequences, WorldMirror produces results that rival specialized feed-forward reconstruction
frameworks. We note a modest performance gap on the KITTI benchmark relative to π3, which we
attribute to the under-representation of urban driving environments in our training distribution. Future
iterations of our work will incorporate a more comprehensive collection of street-level imagery to
enhance generalization to such scenarios.

Surface Normal Estimation. Following the protocol from [4], we evaluate surface normal estimation
on three datasets: iBims-1[27], NYUv2 [45], and ScanNet [11]. We measure angular error between
predicted and ground truth normal maps, reporting both mean and median errors along with the
percentage of pixels below error thresholds of 22.5° and 30.0°. Tab. 4 presents our method’s
performance across three datasets, demonstrating substantial improvements over existing approaches.
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FLARE AnySplat WorldMirror Ground Truth AnySplat WorldMirror Ground Truth

Figure 4: Qualitative Comparisons of Novel View Synthesis. We compare with FLARE and
AnySplat on RealEstate10K and DL3DV. The first four columns correspond to the sparse-view
setting, while the latter three correspond to the dense-view setting. Our approach surpasses baselines
in both appearance fidelity and geometric perception.

Table 6: Novel View Synthesis with 3DGS Optimization on RealEsate10K, DL3DV, and VRNeRF.
In Post-Optimization, the random point cloud refers to initializing Gaussian positions randomly,
whereas the predicted point cloud uses the point cloud estimated by our method as the initialization
of Gaussian positions.

Method Iterations
RealEstate10K (32 views) DL3DV (64 views) VRNeRF (64 views)

PSNR ↑ SSIM ↑ LPIPS ↓ Time ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Time ↓ PSNR ↑ SSIM ↑ LPIPS ↓ Time ↓
Feedforward
AnySplat - 19.96 0.718 0.234 <2s 18.40 0.602 0.286 <2s 22.11 0.759 0.288 <2s
WorldMirror - 25.14 0.859 0.109 <2s 21.25 0.703 0.223 <2s 25.77 0.830 0.208 <2s

Post Optimization
random points cloud 3,000 26.03 0.875 0.145 19s 23.61 0.765 0.244 21s 26.45 0.840 0.259 21s
predicted points cloud 1,000 27.29 0.906 0.092 10s 23.43 0.772 0.248 12s 25.19 0.841 0.257 11s
AnySplat 1,000 23.85 0.834 0.192 23s 20.84 0.695 0.287 55s 23.19 0.782 0.322 33s
AnySplat 3,000 26.03 0.870 0.155 56s 22.20 0.723 0.226 126s 24.64 0.798 0.272 65s
WorldMirror 1,000 27.79 0.915 0.076 23s 23.86 0.786 0.172 45s 25.98 0.845 0.214 38s

The consistent gains across diverse datasets indicate that multi-task frameworks leveraging shared
representations can effectively outperform specialized single-task methods.

Novel View Synthesis. We evaluate zero-shot novel view synthesis on three datasets:
RealEstate10K [70], DL3DV [30], and VR-NeRF [59] under both sparse-view and dense-view
settings. For RealEstate10K, we randomly sample 200 scenes from the NopoSplat [63] test split,
using 3 novel views per scene in the sparse-view setting and 4 novel views per scene in the dense-
view setting. For DL3DV, we follow the FLARE test split and evaluate in 112 unseen scenes, each
containing 9 novel views. For VR-NeRF, consistent with AnySplat, we select 5 scenes, each with 64
input views and 6 novel views. For calculating the rendering metrics, we follow the test-time camera
pose alignment introduced by AnySplat to ensure fair evaluation. Tab. 5 reports the quantitative
evaluation results for novel view synthesis under the feed-forward setting. Our method achieves
substantial improvements over the previous state-of-the-art AnySplat, with consistent gains across all
metrics on both datasets, demonstrating the effectiveness of our unified geometric representation for
high-quality view synthesis.

Novel View Synthesis with Optimization. Although recent feed-forward pipelines are capable
of synthesizing competitive 3D Gaussian splats (3DGS) within seconds, they inevitably suffer
from errors introduced by single-pass predictions, such as suboptimal Gaussian placement and
appearance. We hypothesize that incorporating a brief post-optimization stage—initialized with
either our predicted point cloud or 3DGS primitives—can significantly refine both geometry and
appearance at only modest additional cost, thereby accelerating the convergence of 3DGS training
and enhancing rendering quality. As shown in Tab. 6, we compare (i) feed-forward baselines and (ii)
post-optimization with 3,000 or 1,000 iterations, initialized either from a random point cloud or from
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Figure 5: Geometric Priors Unlock Enhanced Scene Reconstruction of WorldMirror. (Top)
Camera poses help the model to capture relative view positions accurately. (Middle) Calibrated
intrinsic enhances the reconstruction by enabling precise projection modeling and geometry alignment.
(Bottom) Depth guidance enables the network to better handle challenging reconstruction scenarios,
like perspective distortion, unusual geometric configurations, or partial occlusions.

Figure 6: Geometric Priors Boosts Model’s Feed-Forward Performance across All Tasks. Incor-
porating a single modality not only enhances predictions for its corresponding task but also improves
performance across other tasks. This suggests that modal information enables the model to develop a
more comprehensive understanding of the overall geometry.

feed-forward 3DGS primitives. The camera parameters for optimizing 3DGS are obtained from the
feed-forward outputs of the chosen method. Our predicted point cloud, camera, and 3DGS primitives
provide a robust and high-quality initialization for 3DGS optimization, significantly accelerating the
training process and consistently surpassing baseline methods across all metrics.

3.3 Evaluation on Different Input Configurations

To demonstrate the benefits of incorporating priors into model predictions, we evaluate model
performance across various input configurations. We present four key metrics: the inlier ratio at a
relative threshold of 1.03% of points and depths, the area under the curve at a 5° error threshold
(AUC@5), and the average focal error in pixels, measured across the ETH3D [43] and DTU [20]
datasets. As shown in Fig.6, incorporating even a single modality prior yields dual benefits: it
enhances both the corresponding task prediction and the model’s capacity to infer other geometric
attributes. Fig.5 illustrates how different priors contribute to reconstruction quality. Camera poses
enable the model to capture global scene geometry, calibrated intrinsics resolve scale ambiguity,
while depth priors offer pixel-level constraints that prove particularly valuable for reconstructing
geometrically complex regions. These findings confirm that multi-modal priors work synergistically,
where each modality provides complementary geometric constraints that collectively improve the
model’s understanding of 3D scene structure.
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Table 7: Prior Embedding Ablation. Results are averaged over ETH3D and DTU datasets with 10
views as input. ‘Single token’ offers both superior performance and high efficiency.

Prior embedding Extra Focal Depth Pose Point Avg. ↑Params acc@1.03↑ τ@1.03 ↑ RRA@5 ↑ RTA@5 ↑ AUC@5 ↑ τ@1.03 ↑
Input: images & poses
Dense Plücker 9.02M 33.07 31.00 98.59 93.52 72.74 33.74 60.44
Single Token 1.06M 33.82 28.02 98.89 92.57 74.55 38.51 61.06

Input: images & intrinsics
Dense Raymap 6.65M 86.48 29.36 97.17 88.48 60.57 37.40 66.58
Single Token 1.06M 84.43 34.70 98.18 93.64 66.52 36.29 68.96

Table 8: Novel View Synthsis Ablation. Results are from RealEstate10K, DL3DV, and VR-NeRF.

Method RealEstate10K (2 views) DL3DV (8 views) VR-NeRF (32 views)

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
w/o GT Cameras 20.30 0.691 0.193 20.69 0.666 0.206 24.76 0.788 0.197
w/o Novel Views 18.51 0.651 0.215 20.21 0.664 0.196 24.35 0.781 0.199
w/o GS DPT 20.28 0.693 0.195 20.55 0.667 0.218 25.08 0.798 0.191

Ours 20.29 0.693 0.192 20.91 0.671 0.198 25.75 0.811 0.198

Input w/ Predicted Normal w/o Predicted Normal Input w/ Predicted Normalw/o Predicted Normal

Figure 7: WorldMirror Improves Surface Reconstruction with Predicted Normal Maps.

3.4 Ablation Study

Prior Embedding Ablation. We explore different ways of embedding priors in Tab. 7. For camera
poses, we experiment with (1) dense Plücker ray embeddings that are added element-wise to the
image tokens, and (2) a single token concatenation approach where the pose is compressed into a
single token and concatenated to the sequence. For camera intrinsics, we similarly compare dense
raymap embeddings that are added to the image tokens versus a single token. Our experiments reveal
that the single token approach achieves better performance for embedding both camera poses and
intrinsics, suggesting that a compact global representation is more effective than dense per-pixel
conditioning while being more efficient.

Novel View Synthesis Ablation. Tab. 8 reports ablation analysis on the novel view synthesis: (1)
To examine the importance of using ground-truth camera parameters for novel view rendering, we
replace the ground-truth poses and intrinsic matrices in our method with those predicted by the
camera head for computing 3DGS positions and rendering. (2) To assess the necessity of supervising
3DGS rendering not only on input views but also on novel views, we perform an ablation similar to
[22], where no novel-view rendering loss is applied. (3) The GS head predicts all Gaussian attributes
except positions, while the positions are derived from the depth maps estimated by the Depth head.
These studies confirm that both our 3DGS prediction framework and training strategy are crucial, and
removing any component degrades novel view rendering performance.

3.5 Applications

Surface Reconstruction. WorldMirror supports high-quality 3D surface reconstruction with the
predicted smooth normal maps. As shown in Fig. 7, by leveraging the predicted normals instead of
traditional geometric normal estimation from point clouds, WorldMirror produces a cleaner surface
with sharp details via Poisson surface reconstruction [25].
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Input Images Feed-forward 3DGS Synthetic Novel Views

Figure 8: Visual Results of Feed-Forward 3D Gaussians Generated by WorldMirror.

3.6 More Visual Results

Novel View Synthesis. In Fig. 8, we present additional results of feedforward Gaussians and their
corresponding novel view renderings. Whether the input consists of AI-generated videos or real
multi-view images, our method consistently infers 3D Gaussian splatting with plausible geometric
structures and renders high-quality novel view images. This demonstrates that our model generalizes
effectively across diverse input scenarios.

Point Map Reconstruction. We provide additional visual comparisons of point map reconstruction in
Fig. 9 and Fig. 10. Fig. 9 features selected scenes from 7-scenes, NRGBD, and DTU datasets, where
comparisons with ground truth reveal that WorldMirror produces more consistent reconstructions,
particularly when processing sparse viewpoints that require inference of spatial distributions. In
Fig. 10, we evaluate model performance on in-the-wild images by processing both video generation
model outputs and real-world multi-view captures. The results demonstrate that WorldMirror gener-
ates geometrically coherent and plausible reconstructions across these diverse inputs, highlighting its
strong generalization capabilities.
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Figure 9: Visual Comparisons on 7-Scenes, NRGBD, and DTU datasets. WorldMirror delivers
superior reconstruction fidelity compared to VGGT, effectively capturing spatial relationships within
scenes while producing geometrically coherent structures.

4 Related Work

4.1 Feed-Forward 3D Reconstruction.

Feed-forward 3D reconstruction models have recently emerged as powerful alternatives to traditional
SfM/MVS pipelines by directly regressing 3D structure. DUSt3R [54] pioneers this direction with
point map prediction, while Fast3R [60] improves its scalability. VGGT [50] further introduces large-
scale multi-task learning, with subsequent variants that remove reference-view bias [56] and extend
to kilometer-scale sequences [12]. Meanwhile, Dens3R [14] introduces a dense prediction backbone
for joint estimation of geometric attributes. Building on these advances, WorldMirror unifies an even
broader range of 3D tasks, including camera poses, depth, surface normals, point maps, and novel
view synthesis, in one feed-forward pass.

4.2 3D Prior Guidance.

Traditional optimization-based methods like COLMAP [42] incorporate known camera parameters
to improve reconstruction quality. Recent learning-based approaches have also explored different
forms of guidance: UniDepth [36] optionally uses camera intrinsics for improved monocular depth
estimation, while some video diffusion models [16, 18, 48] demonstrate how camera trajectories
can guide consistent content generation. More recently, Pow3R [19] extends DUSt3R [54] with
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Figure 10: Visual Comparisons of In-The-Wild Multi-View 3D Reconstruction. WorldMirror de-
livers superior reconstruction fidelity with in-the-wild images as input, generating more plausible
results in challenging scenarios compared to VGGT. Our approach effectively resolves complex spa-
tial arrangements and maintains geometric consistency even when confronted with difficult viewing
conditions, occlusions, or intricate environmental structures.

additional modalities as input but remains limited to sparse-view inputs within the “3R” paradigms.
The integration of more modalities into dense regression frameworks like VGGT remains unexplored.
In this paper, we present the first systematic exploration of multi-modal geometric prior injection
within dense multi-view reconstruction frameworks.

4.3 Generalizable Novel View Synthesis.

Novel view synthesis (NVS) has been extensively studied with representations such as NeRF [33]
and 3D Gaussian Splatting [26], which achieve photorealistic results but typically require dense-view
training for each scene. Early generalizable NVS methods [67, 8, 58, 31] take sparse-view images
with known intrinsics and poses as input to produce 3D scenes or novel views. While effective for
sparse inputs, these approaches depend on accurate calibration or fixed view counts [10, 34]. Pose-free
methods [21, 52, 63] instead pursue end-to-end reconstruction directly from images. FLARE [69]
introduces a cascaded pose-geometry-appearance pipeline, while AnySplat [22] combines 3D foun-
dation models with 3D Gaussians for real-time NVS from uncalibrated images. We advance beyond
these methods by enabling pose-free novel view synthesis with flexible input view counts, optional
prior incorporation, and superior rendering quality.
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5 Conclusion

We presented WorldMirror, a unified feed-forward model that addresses versatile 3D reconstruction
tasks. By flexibly incorporating diverse geometric priors and generating multiple 3D representations
simultaneously, our framework demonstrates that a single model can effectively handle various
3D reconstruction tasks without task-specific specialization. WorldMirror achieves state-of-the-art
performance across dense reconstruction, multi-view depth estimation, surface normal prediction,
and novel view synthesis, while maintaining feed-forward efficiency. The model’s ability to leverage
available priors enables robust reconstruction in challenging scenarios, and its multi-task design
ensures geometric consistency across different outputs. Our work shows that unified, prior-aware
architectures offer a promising direction for comprehensive and efficient 3D scene understanding.

Limitations and Future Works. Despite the promising results achieved by our approach, several
limitations remain. First, our method demonstrates suboptimal performance on dynamic scenes and
autonomous driving environments, primarily due to the under-representation of such data in our
training distribution. We plan to address this through strategic dataset expansion to enhance model
generalization. Additionally, our current implementation supports input resolutions ranging from
300 to 700 pixels and cannot effectively handle scenarios where the number of input views reaches
into the thousands. This constraint becomes particularly apparent when running on consumer-grade
GPUs. Future work will explore computational optimizations to improve model efficiency and enable
processing of longer visual sequences with reduced memory requirements.
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Lorenzo Porzi, Peter Kontschieder, Aljaž Božič, et al. Vr-nerf: High-fidelity virtualized walkable spaces.
In SIGGRAPH Asia 2023 Conference Papers, pages 1–12, 2023.

[60] Jianing Yang, Alexander Sax, Kevin J Liang, Mikael Henaff, Hao Tang, Ang Cao, Joyce Chai, Franziska
Meier, and Matt Feiszli. Fast3r: Towards 3d reconstruction of 1000+ images in one forward pass. In
Proceedings of the Computer Vision and Pattern Recognition Conference, pages 21924–21935, 2025.

[61] Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Jiashi Feng, and Hengshuang Zhao. Depth
anything: Unleashing the power of large-scale unlabeled data. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 10371–10381, 2024.

[62] Yao Yao, Zixin Luo, Shiwei Li, Jingyang Zhang, Yufan Ren, Lei Zhou, Tian Fang, and Long Quan.
Blendedmvs: A large-scale dataset for generalized multi-view stereo networks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 1790–1799, 2020.

[63] Botao Ye, Sifei Liu, Haofei Xu, Xueting Li, Marc Pollefeys, Ming-Hsuan Yang, and Songyou Peng. No
pose, no problem: Surprisingly simple 3d gaussian splats from sparse unposed images. arXiv preprint
arXiv:2410.24207, 2024.

[64] Chongjie Ye, Lingteng Qiu, Xiaodong Gu, Qi Zuo, Yushuang Wu, Zilong Dong, Liefeng Bo, Yuliang
Xiu, and Xiaoguang Han. Stablenormal: Reducing diffusion variance for stable and sharp normal. ACM
Transactions on Graphics (TOG), 43(6):1–18, 2024.

[65] Vickie Ye, Ruilong Li, Justin Kerr, Matias Turkulainen, Brent Yi, Zhuoyang Pan, Otto Seiskari, Jianbo Ye,
Jeffrey Hu, Matthew Tancik, and Angjoo Kanazawa. gsplat: An open-source library for gaussian splatting.
Journal of Machine Learning Research, 26(34):1–17, 2025.

[66] Chandan Yeshwanth, Yueh-Cheng Liu, Matthias Nießner, and Angela Dai. Scannet++: A high-fidelity
dataset of 3d indoor scenes. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 12–22, 2023.

[67] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. pixelnerf: Neural radiance fields from one
or few images. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 4578–4587, 2021.

[68] Junyi Zhang, Charles Herrmann, Junhwa Hur, Varun Jampani, Trevor Darrell, Forrester Cole, Deqing Sun,
and Ming-Hsuan Yang. Monst3r: A simple approach for estimating geometry in the presence of motion.
arXiv preprint arXiv:2410.03825, 2024.

[69] Shangzhan Zhang, Jianyuan Wang, Yinghao Xu, Nan Xue, Christian Rupprecht, Xiaowei Zhou, Yujun
Shen, and Gordon Wetzstein. Flare: Feed-forward geometry, appearance and camera estimation from
uncalibrated sparse views. In Proceedings of the Computer Vision and Pattern Recognition Conference,
pages 21936–21947, 2025.

[70] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. Stereo magnification:
Learning view synthesis using multiplane images. arXiv preprint arXiv:1805.09817, 2018.

19


	Introduction
	Technical Details
	Multi-Modal Prior Prompting
	Universal Geometric Prediction

	Model Evaluation
	Training Settings
	Evaluation on Different Tasks
	Evaluation on Different Input Configurations
	Ablation Study
	Applications
	More Visual Results

	Related Work
	Feed-Forward 3D Reconstruction.
	3D Prior Guidance.
	Generalizable Novel View Synthesis.

	Conclusion

